
153

A Framework for Monitoring Agent-Based Normative
Systems

Sanjay Modgil
Noura Faci

King’s College London
Dept of Computer Science
London, United Kingdom

sanjay.modgil@kcl.ac.uk

Felipe Meneguzzi
Nir Oren

King’s College London
Dept of Computer Science
London, United Kingdom

felipe.meneguzzi@kcl.ac.uk

Simon Miles
Michael Luck

King’s College London
Dept of Computer Science
London, United Kingdom

simon.miles@kcl.ac.uk

ABSTRACT

The behaviours of autonomous agents may deviate from those deem-
ed to be for the good of the societal systems of which they are a
part. Norms have therefore been proposed as a means to regulate
agent behaviours in open and dynamic systems, where these norms
specify the obliged, permitted and prohibited behaviours of agents.
Regulation can effectively be achieved through use of enforcement
mechanisms that result in a net loss of utility for an agent in cases
where the agent’s behaviour fails to comply with the norms. Recog-
nition of compliance is thus crucial for achieving regulation. In this
paper we propose a generic architecture for observation of agent
behaviours, and recognition of these behaviours as constituting,
or counting as, compliance or violation. The architecture deploys
monitors that receive inputs from observers, and processes these in-
puts together with transition network representations of individual
norms. In this way, monitors determine the fulfillment or violation
status of norms. The paper also describes a proof of concept im-
plementation and deployment of monitors in electronic contracting
environments.

Categories and Subject Descriptors

D.2.10 [Software]: Software Engineering; I.2.11 [Artificial Intel-

ligence]: Distributed Artificial Intelligence—multi-agent systems

Keywords

Monitoring, norms, electronic contracts

1. INTRODUCTION
Recent years have witnessed a growing interest in the use of

norms to regulate and coordinate agent behaviours, and so achieve
the overall objectives of multi-agent systems. Two approaches have
been taken. In the regimentation approach [9], adopted for exam-
ple by electronic institutions [3], agent behaviours are constrained
to those specified by norms. Hence, agent autonomy is drastically
curtailed, and such regimented systems are less flexible in that only
appropriately specified agents can join. In contrast, the enforce-
ment approach [1, 2, 6, 14, 18] allows for autonomous agents, and
hence the possibility of violation of norms by agents. Enforce-
ment mechanisms are thus required to motivate agent compliance

Cite as: A Framework for Monitoring Agent-Based Normative Systems,
S.Modgil, N. Faci, F. Meneguzzi, N. Oren, S. Miles and M.Luck, Proc.
of 8th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May,
10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

by threatening some loss of utility for agents in the case of vio-
lation. The enforcement approach thus requires that agent actions
are monitored; that is, they must be observable and recognised as
complying with or violating norms, in order that the enforcement
mechanisms be appropriately applied.

In this paper we describe a generic framework for monitoring
of agent behaviours in normative multi-agent systems. We moti-
vate and describe how our approach builds on the overhearing ap-
proaches to monitoring (e.g., [10]), whereby messages exchanged
among agents are observed, and behaviours are inferred from these
messages. This contrasts with intrusive approaches [8, 15, 20],
which assume that the mental states of agents are available for
inspection, thus making the design of agent-based systems more
complex, and relying heavily on the compliance of agents to com-
municate the required data.

Our monitoring architecture accounts for the fact that deploy-
ment of agents in normative systems requires some assurance that
enforcement mechanisms, such as punishments or sanctions, will
be employed only as and when appropriate. Any such assurance
will partly rely on some measure of certainty that a norm is re-
ported as violated if and only if it has in actuality been violated.
Two features of our approach to monitoring ensure, to the degree
that it is possible, that such assurance can be provided.

1. Observers of agent behaviours are explicitly entrusted by the
system’s participating agents to accurately report on these
behaviours.

2. Trusted observers can be any environmental artifact, that may
not only observe for messages exchanged, but also more gen-
erally report on whether some state of interest holds or not.

This paper also describes how individual norms — obligations,
prohibitions, and permissions — can be represented as Augmented
Transition Networks (ATNs) [21] that are processed by monitor
agents, together with observations relayed to the monitors by trusted
observers, in order to determine the fulfilment and violation status
of norms. The key features of the ATN representation and process-
ing are as follows.

1. An abstract, general model of norms is assumed.

2. Representation of complex behaviours and states of interest
enacted and brought about jointly by groups of agents.

3. Only behaviours specified by the norms are represented; hence,
a given ATN can represent the same norm specified in any
one of a number of multi-agent systems.

4. ATN representations of norms are independent of each other,
allowing run time addition and removal of norms.

Cite as: A Framework for Monitoring Agent-Based Normative Systems,
Sanjay Modgil, Noura Faci, Felipe Meneguzzi, Nir Oren, Simon Miles,
Michael Luck, Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary, pp. 153–160
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

154

Our approach is thus generic and applicable to a range of dy-
namic open normative systems, including normative organisations
developed by the kinds of dedicated languages described in [2], as
well as electronic contracting frameworks [18] in which contract
clauses specify norms that the contract parties are beholden to.

In summary, this paper makes the following contributions to re-
search on monitoring of norm-governed agent behaviours:

1. We propose a trusted observer model with observations of
agent messages and states of interest, to provide some mea-
sure of assurance that enforcement mechanisms are appropri-
ately applied, so encouraging deployment of agents in nor-
mative systems.

2. Norms are individually represented as independent ATNs that
provide for monitoring of: complex, jointly realised agent
behaviours, and; states of interest brought about by such be-
haviours.

3. Together, the above provide a general framework that is ap-
plicable to monitoring of norms in a broad range of open,
dynamic multi-agent systems.

This paper is organised as follows. Section 2 describes some
general normative concepts that our approach to monitoring makes
use of. Section 3 then motivates and describes an architectural
overview of our approach. In Section 4, we describe how indi-
vidual norms are represented as ATNs, and processed by monitor
agents. Section 5 describes validation of our approach. We report
on a proof of concept implementation of a monitoring agent, and
its processing of ATN representations of norms encoded in an elec-
tronic contract specified by the CONTRACT project1. The imple-
mentation demonstrates monitoring of AgentSpeak(L) agents [19]
whose interactions are governed by normative clauses specified in
an aerospace contract. Finally, Section 6 concludes with a discus-
sion of future and related work. In particular we discuss how the
framework presented here extends and generalises a preliminary
framework described in [4].

2. A GENERAL MODEL OF NORMS
In this section we review a recent general model of norms [18]

that distinguishes some general normative concepts shared by some
existing work on norms and normative systems [12, 5], and which
we adopt in this paper. In [18], a norm N is modelled as a tuple:

(NormType,NormActivation,NormCondition,
NormExpiration,NormTarget)

where:
N is said to come into force, or is activated, if the conditions, or
state of interest, described by NormActivation hold. It is when
N is activated, that one must monitor to ensure that the goal, or
state of interest, described by NormCondition:

• must be brought about by N ’s NormTarget in the case that
N ’s NormType is obligation;

• may be brought about by N ’s NormTarget in the case that
N ’s NormType is permission; or

• must not be brought about by N ’s NormTarget in the case
that N ’s NormType is prohibition.

1www.ist-contract.org

Such states of interest describe states of the world in which ac-
tions have been performed (e.g., messages sent) or certain proper-
ties hold (e.g., ‘the temperature is maintained above 23 degrees for
at least 90% of the time’). Finally N ’s NormExpiration denotes
the state of interest under which the norm is no longer in force.
Henceforth, we will refer to a norm’s NormActivation, Norm
Condition and NormExpiration as a norm’s components.

Note that in this paper we monitor the class of obligations whose
violation can be determined with respect to some temporal condi-
tion holding. Without a temporal condition on the satisfaction of
an obligation to realise or achieve a state of affairs (an achievement
obligation), it would not be possible to determine a point in time
at which a violation had occurred. Obligations to maintain cer-
tain states of affairs (maintenance obligations) often also explicitly
reference temporal conditions that can be evaluated to determine
violation (consider the above mentioned obligation to maintain the
temperature for a certain period of time). However, some mainte-
nance obligations do not (e.g., an obligation to always drive on the
left), and these will be considered further in future work in Section
6.

EXAMPLE 1. Consider the norm — NormGoods — that de-
scribes an obligation on the purchaser of goods G from a supplier
S, where the purchaser is an organisational entity consisting of two
agents: the buyer B and the financial department F :

• NormType = obligation
• NormActivation = B is notified by S that goods G are in stock
• NormCondition =

• 1) B must cancel the order within 7 days of receipt of notifi-
cation
or

• 2) B must accept the order within 7 days of receipt of no-
tification and F must deposit payment for G in S’s bank
account, within 3 days of B’s acceptance.

• NormExpiration =

• 1) B has canceled the order within 7 days of receipt of noti-
fication
or

• 2) B has accepted within 7 days of receipt of notification and
S has received payment for G from F within 3 days of B’s
acceptance
or

• 3) S is declared bankrupt

• NormTarget = B, F

Recall that NormExpiration denotes the state of interest un-
der which a norm is no longer in force. The above example il-
lustrates that a norm may be deemed to have expired for reasons
other than that the norm’s conditions have been fulfilled. In prin-
ciple, extra conditions of the type ‘S is declared bankrupt’ may
be encoded as exceptions in the activation condition. However,
NormGoods may then inappropriately remain in force; suppose
that S goes bankrupt three days after B is notified by S that goods
G are in stock. The norm will remain in force if ‘S is declared
bankrupt’ is not encoded in the expiration condition.

Finally, note that a number of options obtain as to how one for-
mally represents the states of interest described by a norm’s com-
ponents. In the following section we discuss how these options are
determined by issues such as ease of recognition and trust, and how
the choice of option may determine the readiness with which agents
are deployed in normative systems.

Sanjay Modgil, Noura Faci, Felipe Meneguzzi, Nir Oren, Simon Miles, Michael Luck • A Framework for Monitoring Agent-Based Normative Systems

155

3. TRUSTED OBSERVERS AND THE MON-

ITORING ARCHITECTURE

3.1 Motivating Trusted Observers
Enforcement mechanisms are required to motivate agent com-

pliance with norms. Hence, agent actions must be monitored; that
is, they must be observed and recognised as complying with or vi-
olating norms, in order that the enforcement mechanisms can be
appropriately applied.

Monitoring of compliance requires detecting whether the states
of interest described by NormActivation, NormCondition and
NormExpiration hold. In the overhearing approach to monitor-
ing [10], the agent behaviours that bring about states of interest are
inferred from the messages exchanged. This suffices when states
are inherently described as ones in which messages have been sent
and received (e.g.,NormActivation in Example 1). However, it
may not be possible, or indeed desirable, to describe and recog-
nise such states exclusively on the basis of exchanged messages.
Consider NormCondition in Example 1, in which:

F is obliged to deposit payment for G in S’s bank ac-
count within 3 days of B’s acceptance.

Fulfilment of this obligation can be recognised by observing for
F ’s sending of a notification message to S, informing the latter
that payment has been made. However, to motivate deployment of
S in a normative system containing the norm NormGoods (e.g.,
as a signatory to an electronic contract specifying NormGoods as
a contractual clause), S must be assured that enforcement mecha-
nisms will be applied if F does not pay. If recognition of fulfilment
is solely based on observing the above notification message, then
this assurance equates with an assurance that the notification mes-
sage is sent if and only if payment has in fact been made. Of course,
any such assurance would be questionable given that, if F has not
made the payment, F can avoid sanction by still sending the noti-
fication message, since this will suffice to indicate fulfilment of the
obligation.

We thus propose that agents deployed in normative systems ex-
plicitly entrust particular observers to accurately relay observations
to monitors2, where these observations may be of messages ex-
changed or of properties that describe some state of interest. Thus,
in the above example, agents F and S might explicitly entrust the
bank itself to be an observer that reports to a monitoring agent that
F has deposited the money. Unlike the case of the notification mes-
sage sent by F , no gain accrues to the bank if the bank mis-reports.

Alternatively, agents F and S could also entrust an observer
other than the bank, to accurately report on both a message sent
from F to S notifying that payment has been made, and a mes-
sage sent from the bank to S notifying the latter that the money has
been deposited (although observation of messages sent from banks
would raise information privacy issues that may prove difficult to
resolve).

Finally, consider the case in which a supplier is obliged to place a
purchased book on an internet site for downloading by a purchaser,
within 14 days of receiving payment. In this case, the internet site
can be ascribed trusted observer status, reporting to a monitor that
the book has been placed.

3.2 The Monitoring Architecture
In this section we describe our architecture for monitoring the

behaviours of agents deployed in normative systems. Trusted ob-
servers report to monitors on whether states of interests referenced
2For example by stipulating contractual agreements as to which
observers are to be trusted

by norms’ components, do or do not hold. Monitors process these
observations together with augmented transition network (ATN)
[21] representations of norms. In Section 4 we describe in detail
how these ATNs represent the states of interest.

Environ-
ment

Agents

ATNs
representing
norms

messages +
predicates

Interepretation
Engine

Explanation
Generator

messages predicates

Trusted
observers

What are the norms
violated, why, and how

Mapper

Norms:
prohibitions,
obligations,
permissions

Monitor

Managers

Monitoring Architecture

Normative System

Figure 1: Monitoring architecture and its relationship to a nor-

mative system.

Figure 1 provides an overview of the monitoring architecture, in
which the agents are treated as black boxes and their internal state
transitions are invisible to the monitors. A mapper maps norms
to their ATN representations, for input to the monitor (this input
is provided off-line). At run time, monitors subscribe to all ob-
servers entrusted with reporting on the states of interest identified
by a norm’s components (NormActivation, NormCondition
and NormExpiration). The monitor can identify which observers
to subscribe to, based on the ATN representation (as will be de-
scribed in Section 4). Notice that there is nothing in the specifica-
tion of the monitor that ties it to a particular normative system.

At run-time, observers notify monitors as to whether states of
interest hold or not, by notifying monitors of: messages exchanged
amongst agents, messages exchanged between agents and the en-
vironment, and predicates describing properties of the world (these
properties may refer to actions having been performed). For ex-
ample, in the use case implementation in Section 5, a state of in-
terest in which an engine e has been repaired may be described in
terms of a message sent from the repairer of the engine inform-
ing another party that the engine has been repaired, or an inferred
predicate engine_repaired(e) from some theory describing the
environment.

Notice that the observers are external to the normative system
itself; their role is only to report on whether predicates hold or not,
or on the sending and receipt of messages. They are not responsible
for any kind of processing of this information. Thus, any environ-
mental artifact can be assigned trusted observer status, including in-
ternet sites, human agents, banks, description logic reasoners, etc.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

156

Monitors process observations together with the ATN representa-
tions of the norms, to determine when a norm is activated, fulfilled
or violated, or has expired. Finally, the monitor informs manager
agents of norms that have been violated, and of the agents respon-
sible for violation. Manager agents then in turn impose sanctions
on responsible agents.

Notice also that the choice of observers (and monitors) is appli-
cation -specific, and agreed to by the agents whose behaviours are
being observed, where such agreement constitutes a declaration of
trust. The behaviours of observers (and monitors) may themselves
be governed by normative clauses, and thus observed and moni-
tored for deviation from their expected behaviour. This would re-
duce the potential for collusion (e.g., an agent dealing with eBay is
more likely to trust a PayPal observer, even though PayPal is owned
by eBay, if the behaviour of PayPal is itself normatively prescribed
and sanctioned in case of violation).

4. REPRESENTATION AND PROCESSING

OF NORMS FOR MONITORING
ATNs [21] are essentially directed labelled graphs that were orig-

inally proposed for parsing complex natural languages. In general,
transitioning an arc from one ATN node to another is based on some
processing of that arc’s labels. A basic ATN representation of a
norm N is a three node ATN ({S1, S2, S3}, A1,A2), where A1
is the set of arcs connecting node S1 to node S2, and A2 is the
set of arcs connecting node S2 to node S3. Here, the transition
from S1 to S2 corresponds to the activation of a norm, while the
transition from S2 to S3 corresponds to the norm’s fulfillment or
violation. The arcs are labelled so that, based on reports received
from observers, the monitor matches the reports with the arc labels
that describe the states of interest specified by N ’s components,
and then transitions the ATN from one node to the next, across the
matched arc. If the ATN remains at node S1, then N is not acti-
vated. If the ATN is at node S2, then N is activated, and in the case
of an obligation, if it remains at S2 after a given period of time
identified by NormCondition, then N is violated (the deadline
is exceeded). If the ATN is at node S3, then N is fulfilled if N
is an obligation or permission, or violated if N is a prohibition (a
prohibited state has been reached).

In what follows we describe in more detail the representation of
norms as ATNs, and their processing by monitors.

4.1 Representing Norms as ATNs
A key requirement for norm representation and processing is

to account for representation of complex behaviours and states of
interest, possibly enacted and brought about jointly by multiple
agents. For example, consider NormGoods (Example 1) in which
the state in which the obligation is fulfilled is described by a dis-
junction of behaviours, where the second disjunct:
B must accept the order within 7 days of receipt of notification and

F must deposit payment for G in S’s bank account, within 3 days
of B’s acceptance

describes a conjunction of behaviours by two distinct agents B and
F , where these obliged behaviours must satisfy some temporal con-
straints. Recall also Section 3.1’s suggested representation for de-
tection of F must deposit payment for G in S’s bank account, in
terms of a notification message sent by F to S and a message from
S’s bank, to S, confirming receipt of the monies.

In order to be able to represent such complex descriptions of be-
haviours and states of interest, we assume representation of each
norm component in disjunctive normal form. In Section 3 we de-
scribed requirements for representing the states of interest described

by each norm component, in terms of messages exchanged, and/or
predicate descriptions. Such representations are obtained by a map-
ping from a disjunctive normal form formulation of each norm
component. These representations are then used to label arcs in
the ATN representation of a norm.

DEFINITION 1. [Mapping norm components to ATN labels]
For each norm component NComp ∈ { NormActivation,
NormCondition, NormExpiration }, let NComp =

α1 ∨ . . . ∨ αn,
where for i = 1 . . . n, αi is a conjunction:

β1 ∧ . . . ∧ βm.
Then, for j = 1 . . . m:

map(βj) = {(Obβj , Mβj , Tβj)}, where:

1. Mβj is a message or predicate description

2. Tβj is a temporal expression to be evaluated in conjunction
with the processing of Mβj

3. Obβj is a unique identifier for the observer responsible for
observing and reporting Mβj

For any αi = β1 ∧ . . . ∧ βm we let

map_conj(αi) =
⋃m

j=1 map(βj)

Notice that a predicate description may be of form happened(
Act) where Act is an action, or may describe the post-conditions
of an action. The latter option may provide for more flexibility
in terms of the actions executed to bring about the post-conditions
describing the state of interest. While Obβj uniquely identifies the
observer entrusted to report the messages or the truth of predicates
in Mβj , in practice, multiple observer identifiers may refer to the
same observer. Notice that the observer identifiers enable a monitor
to identify which observers to subscribe to when processing ATNs.

EXAMPLE 2. For NormActivation in Example 1, we obtain
{(ObS_notify , (send(S, B, in_stock(G)), T1)3, T1)}
and for the first disjunct in NormCondition:
{
(ObB_cancel, (send(B, S, cancel(G)),T2), T2 � (T1 + 7)) }
and for the second disjunct in NormCondition:
{
(ObB_accept, (send(B, S, accept(G)),T3), T3 � (T1 + 7)),
(ObS_bank, (deposited(F, S, Gcost),T4), T4 � (T3 + 3))
}

We now define representation of a norm as an ATN:

DEFINITION 2. [Defining ATN representations of norms]
Let N = (NormType,NormActivation,NormCondition,
NormExpiration,NormTarget), where:

• NormActivation = δ1 ∨ . . . ∨ δm

• NormCondition = ε1 ∨ . . . ∨ εn

The defined ATN is a three node labelled graph represented as a
tuple ({S1, S2, S3},A1,A2) where:

• A1 is set of arcs {(S1, S2)1, . . . , (S1, S2)m} such that for
i = 1 . . . m, map_conj(δi) labels (S1, S2)i

• A2 is set of arcs {(S2, S3)1, . . . , (S2, S3)n} such that for
i = 1 . . . n, map_conj(εi) labels (S2, S3)i

Figure 2a illustrates an ATN representation of a generic norm N ,
and Figure 2b shows the ATN representation of NormGoods.
3We assume FIPA communication standards, and represent mes-
sage descriptions as tuples consisting of the message itself and its
time stamp

Sanjay Modgil, Noura Faci, Felipe Meneguzzi, Nir Oren, Simon Miles, Michael Luck • A Framework for Monitoring Agent-Based Normative Systems

157

[h]

map_conj(δ1)

S1 S2 S3

map_conj(ε1)

map_conj(δm) map_conj(εn)

a)

S1 S2 S3

b)

{ (ObS_notify,
 (send(S,B,in_stock(G)) , T1),
 T1) }

{ (ObB_cancel,
 (send(B,S,cancel(G)) , T2),
 T2 =< T1+7) }

{ (ObB_accept,
 (send(B,S,accept(G)) , T3),
 T3 =< T1+7) ,
 (ObB_bank,
 (deposited(F,S,Gcost) , T4),
 T4 =< T3+3) }

Figure 2: ATN representations of norms

4.2 Interpretation of ATNs by Monitors
This section describes how monitors process reports received

from observers, together with ATN representations of norms, in or-
der to determine the status of norms.

Consider a norm N represented as the ATN ({S1, S2, S3}, A1,
A2). If at least one arc in A1 or A2 is satisfied — by which we
mean that observers report that the messages labelling the arc have
been sent, and / or the predicate descriptions hold, and the temporal
expressions labelling the arc are evaluated by the monitor to be true
— then the monitor transitions the arc to the successor node (where
S2 and S3 are the successors of S1 and S2 respectively).

If an arc δi in A1 is transitioned from S1 to S2, the monitor can
communicate to a manager that N is activated, where the reasons
for the activation are the messages and predicates labelling δi. If
an arc εi in A2 is transitioned from S2 to S3, and N is a permis-
sion or obligation, then the monitor can communicate to a manager
that N is fulfilled, and if N is a prohibition, then the monitor can
communicate to a manager that N is violated. In either case, the
reasons for the fulfillment or violation — the messages and predi-
cates labelling εi — can also be communicated to the manager.

Finally, NormExpiration represents conditions under which,
if an ATN is in node S1, the norm is not activated (irrespective of
whether an arc in A1 is satisfied), and if the ATN is in state S2,
then the issue of the norm’s fulfillment / violation no longer arises.

4.2.1 Time windows for detecting violation of obli-
gations

We have thus far not considered the case in which an obligation
is violated. We aim at representation and monitoring of obligations
whose violation can be determined with respect to some tempo-
ral condition holding. For example, in order that one can deter-
mine whether an obligation to bring about some state (an achieve-
ment obligation) is violated, reference is required to some point of
time before which the state must be brought about. Some main-

tenance obligations also explicitly reference a time period during
which some state of affairs must be maintained.

We thus define the notion of a time window, based on the tem-
poral expressions labelling the arcs in A2. Consider a modified
version of Example 1 in which we simply have the obligation β1

= ‘B is obliged to cancel within 7 days of receipt of notification’.
This obligation can only be violated after 7 days after receipt of
notification; 7 days is the time window for this obligation. Con-
sider also a modified version of Example 1 in which β2 ∧ β3 = ‘B
is obliged to accept within 4 days of notification and F pays within
6 days of notification’. This obligation can only be violated after
4 days after receipt of notification. Notice that if it is day 5, and
B has not accepted, then the obligation is violated. Now let us put
these normative conditions together in a disjunct: β1 ∨ (β2 ∧ β3).
The time window in which the monitor must check for violation is
now the maximum time window of all the disjuncts, i.e., 7 days. To
illustrate, consider the following scenarios:

1. Suppose it is day 6 and neither disjunct is satisfied. The obli-
gation is not violated since B still has a day left in which to
cancel.

2. Suppose it is day 8 and B has accepted on day 5 after the
notification and F has paid on day 5 after the notification.
The obligation is violated since neither disjunct is satisfied.

3. Suppose it is day 7 and B has accepted on day 4 after the
notification and F has not yet paid. The obligation is not
violated since it can still be fulfilled by B by cancelling on
day 74.

In general then, we assume a defined function time_window
that returns a temporal expression (e.g. ‘7 days after receipt of noti-
fication’) which, if evaluated to true, and if none of the NormCond-
ition’s arcs (in A2) are satisfied, then if the norm is an obligation,
the norm is said to be violated.

DEFINITION 3. [Signatures of functions defining time windows]
Let A2 = {(S2, S3)1, . . . , (S2, S3)n}. Then:

• time_w_d : (S2, S3)i �→ TWD where TWD is a tempo-
ral expression.

• time_window : { time_w_d((S2, S3)1),. . ., time_w_d(
(S2, S3)n)} �→ TW where TW is a temporal expression

From the preceding example, one can see that an obvious way to
define these functions is by letting time_w_d return some minimal
temporal value for temporal expressions in the conjuncts labelling
a single arc, and time_window returns the maximum amongst
these values. In what follows, we will as an abuse of notation write
time_window(A2) to denote the temporal expression returned by
the function time_window in the above definition.

4.2.2 Formally defining interpretation of ATNs
We now define the above concepts formally, in which we assume

a monitor Mon interpreting an ATN XN = ({S1, S2, S3},A1,A2)
for the norm N = (Norm Type,Norm Activation, NormCond−
ition,Norm Expiration, NormTarget)

DEFINITION 4. [Satisfaction of arcs]
Let a be an arc in A1 or A2, where a is labelled by:

{ (Obβ1 , Mβ1 , Tβ1), . . ., (Obβn , Mβn , Tβn)}
We say that a is satisfied, if for i = 1 . . . n, Mon receives Mβi from
Obβi , and Tβi evaluates to true.
4This illustrates that one should additionally prohibit an agent from
both accepting and cancelling.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

158

DEFINITION 5. [Interpreting NormExpiration]
Let NormExpiration = γ1 ∨ . . .∨ γl.

• We say that a monitor Mon evaluates NormExpiration
as not holding if, for j = 1 . . . l, γj does not not hold.

• We say that γj = (β1 ∧ . . . ∧ βm) does not not hold if:

– for at least one i, where map(βi) = (Obβi , Mβi , Tβi),
either Mon does not receive Mβi from Obβi , or Tβi

does not evaluate to true.

DEFINITION 6. [Transitioning ATN to S2]
Let N not be activated, fulfilled, or violated (XN is in node S1).
Suppose monitor Mon evaluates NormExpiration as not hold-
ing. Then, if at least one arc a in A1 is satisfied, XN transitions to
S2 and N is said to be activated.

DEFINITION 7. [Transitioning ATN to S3]
Let N be activated (XN is in node S2). Suppose monitor Mon
evaluates NormExpiration as not holding.

If at least one arc a in A2 is satisfied, then XN transitions to S3,
and:

• If N is an obligation or permission, then N is said to be
fulfilled.

• If N is a prohibition then N is said to be violated.

DEFINITION 8. [Violation of obligation in S2]
Let the obligation N be activated (XN is in node S2). Suppose
Mon evaluates NormExpiration as not holding.

If time_window(A2) evaluates to true, and no arc in A2 is satis-
fied, then XN remains in node S2, and the obligation N is said to
be violated.

We have thus far illustrated monitoring with respect to the obli-
gation NormGoods in Example 1. In the next section we describe
an implementation of a monitor, and its validation under a real-
world scenario that involves agents governed by permissions, pro-
hibitions and obligations in the aerospace domain.

5. IMPLEMENTATION AND VALIDATION

5.1 Monitor Implementation
This section describes an implementation of a monitor that re-

ceives messages from observers, and processes them so as to tran-
sition the ATN representations of the norms being monitored. At
its core, our monitor contains a message store that is updated by
received messages. When an arc is satisfied (see Definition 4) with
respect to the contents of a message store, the monitor transitions
the ATN. We consider two types of ATN: abstract and instantiated.
ATNs in state S1 are said to be abstract because their arcs are la-
belled by expressions whose variables will be instantiated by con-
crete situations in which the norm comes into force (is activated).
Hence, given an abstract ATN, when an arc a in A1 is satisfied,
the resulting grounding of the variables in the Mβs labelling a is
propagated to the variables in expressions labelling arcs in A2, thus
creating an instantiated instance I of the abstract ATN, where I is
then transitioned to S2 (corresponding to activation of the norm).

For example, the norm in Example 1 has a variable denoting a
generic type of good that, once accepted, needs to be paid for. In
this case, when the monitor receives a message denoting that a sup-
plier Susan has the good galoshes in stock for buyer Bernard, the
abstract ATN of Figure 2b is instantiated and its variables S, G and

B are bound to Susan, galoshes and Bernard respectively. From this
point on, only observer messages whose contents satisfy these vari-
able groundings can cause the instantiated ATN to be transitioned
to state S3.

Finally, when norms are fulfilled or violated, the monitor gen-
erates notifications to the manager to take appropriate action. We
illustrate this operation in Figure 3, which shows the flow of mes-
sages from the observers to the monitor’s message queue, its pro-
cessing and subsequent notifications to the manager.

Algorithm 1 Monitor control loop
Require: Message queue Qmsg

Require: Message store MSt

Require: Set of abstract norm ATNs XAbs

Require: Set of instantiated norm ATNs XInst

1: while Monitor is active do
2: while Qmsg is not empty do
3: Retrieve Msg from head of Qmsg

4: Add Msg to MSt{First, deal with messages}
5: for all Abstract norm ATN A in XAbs do
6: for all Arcs a in A1A do
7: if satisfied(MSt,arc label a) then
8: create a norm ATN instance I of A
9: add I to XInst

10: move I to state S2
11: end if
12: end for
13: end for
14: for all Instantiated norm ATN I in XInst do
15: for all Arcs a in A2I do
16: if satisfied(MSt,arc label a) then
17: remove I from XInst

18: move I to state S3
19: if Norm I is an obligation or permission then
20: notify manager of fulfilment
21: else if Norm I is a prohibition then
22: notify manager of violation
23: end if
24: end if
25: end for
26: end for
27: end while{Now deal with time windows}
28: for all Instantiated norm ATN I in XInst do
29: if time_window(A2I) and I is an obligation then
30: notify manager of violation
31: end if
32: end for
33: end while

Messages

Observer
Messages

Message
Queue

Abstract
ATNs

Time−based
Transitions

Instantiated

ATNs

Monitor
Control
Loop

Manager

Figure 3: Overview of the monitor control loop.

This process is more precisely illustrated in Algorithm 1, which
describes the control loop used in our monitor.

Its initial loop (lines 2 to 27) handles messages received from the
observers by initially trying to satisfy outgoing arcs from S1 in the
abstract ATNs (line 6). If successful for at least one arc (line 7),
then an instantiated ATN is created, added to the set of instantiated
ATNs and transitioned to S2 (lines 8 to 10). Satisfaction of out-

Sanjay Modgil, Noura Faci, Felipe Meneguzzi, Nir Oren, Simon Miles, Michael Luck • A Framework for Monitoring Agent-Based Normative Systems

159

going arcs from S2 (i.e., arcs in A2) in each instantiated ATN is
then checked (line 15), and if successful, the instantiated ATN is
removed from the set of instantiated ATNs and transitioned to S3
(lines 17 to 18). When this transition occurs and the norm is an
obligation or a permission, it denotes that the norm has been ful-
filled, else if the norm is a prohibition the norm has been violated,
and the manager is notified accordingly (lines 19 to 22).

Finally, our algorithm needs to deal with the case where a time
window has elapsed for obligations. This occurs in the loop of
lines 28 through 32. If an instantiated obligation ATN is still in
XInst (none of its arcs in A2 are satisfied), and time_window
(A2) evaluates to true, then the monitor notifies the manager that
the obligation has been violated.

5.2 Use Case
In order to validate our approach to monitoring, we implemented

and deployed a monitor in a prototype multi-agent system in which
agents exchange messages that correspond to obliged, prohibited
and permitted behaviours encoded in an electronic contract. Specif-
ically, recent work on electronic representations and software tools
for contracts [18] have highlighted a number of case studies [7].
A prototype for an aerospace logistics case study [16] implements
aerospace agents — airline operators (AOs), engine manufacturers
(EMs), and service sites (SSs) — whose behaviours are required to
comply with (amongst others) norms governing the repair of en-
gines and sourcing of parts for these repairs. In particular, it is
commonplace for EMs, located at airports, to be under obligation
to have operational engines available for the planes of a client AO.
Furthermore, AOs may dictate permissions and prohibitions on the
sourcing of parts for their engines. These norms are then inher-
ited in contracts between EMs and service sites responsible for the
actual servicing and repair of engines. For instance, in order for a
given EM Boing to fulfill its obligations and provenance restrictions
for a given AO, Boing’s contract C with a service site Heathhedge
stipulates the following norms:

1. Ob1: Heathhedge is obliged to repair engines for Boing
within 7 days of receipt of an order for repair.

2. Per1 and Per2: Heathhedge is permitted to source parts for
engines for Boing, from part manufacturers 1 and 2 (pm1
and pm2).

3. Pro3: Heathhedge is prohibited from sourcing parts for en-
gines for Boing, from part manufacturer 3 (pm3).

The prototype implementation deploys AgentSpeak(L) agents [19]
representing each of the contract parties Boing and Heathhedge,
as well as the part manufacturers pm1, pm2 and pm3. We also
deploy observers, a manager, and a monitor. The observers are re-
sponsible for relaying to the monitor, messages exchanged between
Boing and Heathhedge, and between Heathhedge and the part
manufacturers. In what follows we describe two scenarios in which
messages are observed and relayed to a monitor who then processes
these together with ATNs representing the above norms, and reports
on their status. For both scenarios it is assumed that there is a prior
message from Boing to Heathhedge ordering repair of an engine.
This message results in the ATNs for each of Ob1, Per1, Per2 and
Pro3 being transitioned to their activation state S2.
Scenario 1:

1 Heathedge orders a part for the engine from pm1.
2 pm1 informs Heathedge that the delivery time for the part

is 3 days.
3 The delivery time is acceptable for Heathedge since it will

allow Heathedge to repair the engine within 7 days, and so

Heathedge orders the part from pm1. This order message
results in the ATN for Per1 transitioning to S3, thus indi-
cating fulfilment of the permission.

4 However, Heathedge is notified by pm1 that the part has
been sent on the 4th day after the part order from Heathedge
(because of unavoidable delays).

5 Because of the delay in receipt of the part, Heathhedge can-
not repair the engine repair within 7 days and so no message
informing completion of repair is sent from Heathhedge to
Boing within the 7 day time window. Hence the ATN for
Ob1 is in state S2 on day 8, and the monitor informs the
manager that Heathhedge has violated its obligation.

In Scenario 2, pm1 and pm2 inform Heathedge of delivery times
that are not acceptable. Heathedge is then faced with a choice
of violating its obligation, or ordering from the prohibited pm3
who can provide the part in an acceptable time. Heathhedge
chooses the latter option. Observation of the order message sent
from Heathedge to pm3 results in transitioning the ATN for Pro3

to S3, and the monitor informs the manager of violation of this pro-
hibition. However, Heathhedge informs Boing of completion of
repair on the sixth day after receipt of the repair order. This results
in the ATN for Ob1 transitioning to S3. Hence, the obligation is
reported by the monitor as fulfilled.

6. CONCLUSIONS
In this paper we have described a monitoring architecture in

which trusted observers report to monitors on states of interest rel-
evant to the activation, fulfillment, violation and expiration status
of norms. This provides some measure of assurance that sanc-
tions will be applied as and when appropriate, and thus enhances
prospects for deployment of agents in normative systems. We have
described how individual norms are represented as ATNs, that are
processed by monitors together with observations relayed by ob-
servers, in order to determine the status of norms. The ATNs repre-
sent complex behaviours and states of interest, and only behaviours
specified by the norms are represented. Hence, a given ATN can
represent the same norm specified in any one of a number of multi-
agent systems. Furthermore, ATN representations of norms are in-
dependent of each other, allowing run time addition and removal
of norms to the monitored system. Taken together, these features
enhance the generality of the framework, and to substantiate this
claim, we have described a proof of concept implementation of a
monitor agent monitoring agents whose behaviours are governed
by normative clauses in an electronic contract.

The framework described in this paper extends a recent pre-
liminary framework [4] in that it allows for monitoring of com-
plex jointly realised behaviours, deploys trusted observers, and im-
plements and validates processing ATN representations of norms.
Other work related to ours includes monitoring of contracts in a
Web Services context [11, 17], where the focus is on quality of
service metrics rather than on the behaviours of agents. Other re-
searchers adopt an overhearing approach to monitoring in organi-
sational contexts [13, 10]. However, these works adopt overhearing
in order to infer the mental states of the agents, where these states
are domain-dependent and private to the agents. By contrast, we
adopt overhearing of messages exchanged and predicates, for the
different purpose of evaluating the status of norms.

We conclude with a discussion of three areas of future work to be
pursued. As mentioned in Section 2, further work needs to address
representation and monitoring of maintenance obligations that do
not explicitly refer to temporal conditions. For example, consider
an obligation to always drive on the left. In practice, such a norm

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

160

will be activated at a time T1 when an individual starts to drive,
and terminates at time T2 when she ceases to drive. One might
then specify an explicit temporal window: ∀T, T1 ≤ T ≤ T2.
This would require extending the processing of an ATN to transition
back and forth from S2 to S3. At each time point T , if she is
driving on the left, the ATN transitions to the fulfillment state S3,
and then immediately transitions back to S2, so that if at the next
time point she is not driving on the left, then she can be detected as
having violated the obligation. An alternative would be to create a
new instantiation of the maintenance obligation at each time point
T . In this view, the fulfillment of an instance of the norm at T
results in its expiration, and so a new instance is created at T + 1.

Providing explanations of norm violations is important if man-
agers are to appropriately assign responsibility and apply sanctions.
Explanations can also help to evolve the normative specification of
a system in order to prevent future violations. Thus far, monitors
provide limited explanation of violation and fulfilment, in terms of
the labels of the arcs transitioned. Future work will investigate gen-
eration of more comprehensive explanations. This may require ref-
erence to representations of work-flow separate from that implicitly
specified by norms. This information may in turn be gleaned from
observers. For example, in the second scenario in the use case, ac-
cess to all messages exchanged between Heathedge and the part
manufacturers can be used to explain that in order to fulfill the re-
pair obligation, the prohibition on sourcing parts from pm3 had to
be violated, since pm1 and pm2’s delivery times would not have
allowed the obligation to be fulfilled.

Finally, we note that the focus of this paper has been on correc-
tive monitoring, whereby critical states are monitored for violation
of norms. Predictive monitoring requires representation and recog-
nition of danger states, which are associated with agent behaviours
that suggest that a norm may be in danger of violation. Future
work will address how such states may be identified empirically;
for example by observing and analysing violation of norms at run-
time and the intermediate states that are reached prior to violation.
These intermediate states can then be explicitly (as extra nodes)
in the ATN representation of norms, so that during future run-time
executions, observation of messages indicating transition to these
states may signal preemptive action to avoid violation.

Acknowledgements: The research described in this paper is partly
supported by the European Commission Framework 6 funded project
CONTRACT (INFSO-IST-034418). The opinions expressed herein
are those of the named authors only and should not be taken as nec-
essarily representative of the opinion of the European Commission
or CONTRACT project partners.

7. REFERENCES
[1] R. Conte, R. Falcone, and G. Sartor. Agents and norms: How

to fill the gap? Artificial Intelligence and Law, 7:1–5, 1999.
[2] M. Dastani, D. Grossi, J.-J. C. Meyer, and N. Tinnemeier.

Normative multi-agent programs and their logics. In Proc.
Workshop on Knowledge Representation for Agents and
Multi-Agent Systems (KRAMAS’08), pages 236–243, 2008.

[3] M. Esteva, B. Rosell, J. A. Rodríguez-aguilar, and J. L.
Arcos. Ameli: An agent-based middleware for electronic
institutions. In 3rd Int. Joint Conference on Autonomous
Agents and Multi-agent Systems, pages 236–243, 2004.

[4] N. Faci, S. Modgil, N. Oren, F. Meneguzzi, S. Miles, and
M. Luck. Towards a monitoring framework for agent-based
contract systems. In 12th Int. Workshop on Cooperative
Information Agents (CIA 2008), pages 292–305, 2008.

[5] A. D. H. Farrell, M. Sergot, M. Salle, and C. Bartolini. Using

the event calculus for tracking the normative state of
contracts. International Journal of Cooperative Information
Systems, 4(2–3):99–129, 2005.

[6] D. Grossi. Designing Invisible Handcufffs. PhD thesis,
Utrecht University, SIKS, 2007.

[7] M. Jakob, M. Pchouek, J. Chabera, S. Miles, M. Luck,
N. Oren, M. Kollingbaum, C. Holt, J. Vazquez, P. Storms,
and M. Dehn. Case studies for contract-based systems. In
Proc. 7th Int. Joint Conference on Autonomous Agents and
Multiagent Systems, pages 55–62, 2008.

[8] N. R. Jennings. Controlling cooperative problem solving in
industrial multi-agent systems using joint intentions.
Artificial Intelligence, 75(2):195–240, 1995.

[9] A. J. I. Jones and M. Sergot. On the characterisation of law
and computer systems: The normative systems perspective.
In Deontic Logic in Computer Science: Normative System
Specification, pages 275–307. John Wiley and Sons, 1993.

[10] G. Kaminka, D. Pynadah, and M. Tambe. Monitoring teams
by overhearing: A multi-agent plan-recognition approach.
Journal of Artificial Intelligence Research, 17:83–135, 2002.

[11] A. Keller and H. Ludwig. The WSLA framework:
Specifying and monitoring service level agreements for web
services. Journal of Network Systems Management,
11(1):57–81, 2003.

[12] M. Kollingbaum. Norm-governed Practical Reasoning
Agents. PhD thesis, University of Aberdeen, 2005.

[13] F. Legras and C. Tessier. Lotto: group formation by
overhearing in large teams. In AAMAS ’03: Proceedings of
the second international joint conference on Autonomous
agents and multiagent systems, pages 425–432, 2003.

[14] F. L. Y. Lopez, M. Luck, and M. d’Inverno. A normative
framework for agent-based systems. Computational and
Mathematical Organization Theory, 12(2-3):227–250, 2006.

[15] H. Mazouzi, A. E. F. Seghrouchni, and S. Haddad. Open
protocol design for complex interactions in multi-agent
systems. In 1st Int. Joint Conference on Autonomous Agents
and Multiagent Systems, pages 517–526, 2002.

[16] F. R. Meneguzzi, S. Miles, M. Luck, C. Holt, M. Smith,
N. Oren, N. Faci, M. Kollingbaum, and S. Modgil. Electronic
contracting in aircraft aftercare: A case study. In
Proceedings of the Seventh International Joint Conference
on Autonomous Agents and Multiagent Systems, Industry and
Applications Track, 2008.

[17] Z. Milosevic, S. Gibson, P. Linington, J. Cole, and
S. Kulkarni. On design and implementation of a contract
monitoring facility. In Proceedings of the First International
Workshop on Electronic Contracting, page 10. IEEE, 2004.

[18] N. Oren, S. Panagiotidi, J. Vazquez-Salceda, S. Modgil,
M. Luck, and S. Miles. Towards a formalisation of electronic
contracting environments. In To appear in Proc.
Coordination, Organization, Institutions and Norms in Agent
Systems (COIN 2008), 2008.

[19] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a
Multi-Agent World. Springer, 1996.

[20] M. Tambe. Towards flexible teamwork. Journal of Artificial
Intelligence Research, 7:83–124, 1997.

[21] W. A. Woods. Transition network grammars for natural
language analysis. Communications of the ACM,
13(10):591–606, 1970.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

